Exploring ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions
نویسندگان
چکیده
Plants are dependent on exogenous nitrogen (N) supply. Ammonium (NH₄(+)), together with nitrate (NO₃(-)), is one of the main nitrogenous compounds available in the soil. Paradoxically, although NH4 (+) assimilation requires less energy than that of NO₃(-), many plants display toxicity symptoms when grown with NH₄(+) as the sole N source. However, in addition to species-specific ammonium toxicity, intraspecific variability has also been shown. Thus, the aim of this work was to study the intraspecific ammonium tolerance in a large panel of Arabidopsis thaliana natural accessions. Plants were grown with either 1mM NO₃(-) or NH₄(+) as the N source, and several parameters related to ammonium tolerance and assimilation were determined. Overall, high variability was observed in A. thaliana shoot growth under both forms of N nutrition. From the parameters determined, tissue ammonium content was the one with the highest impact on shoot biomass, and interestingly this was also the case when N was supplied as NO₃(-). Enzymes of nitrogen assimilation did not have an impact on A. thaliana biomass variation, but the N source affected their activity. Glutamate dehydrogenase (GDH) aminating activity was, in general, higher in NH4 (+)-fed plants. In contrast, GDH deaminating activity was higher in NO₃(-)-fed plants, suggesting a differential role for this enzyme as a function of the N form supplied. Overall, NH4 (+) accumulation seems to be an important player in Arabidopsis natural variability in ammonium tolerance rather than the cell NH₄(+) assimilation capacity.
منابع مشابه
Dissecting the genetic control of natural variation in salt tolerance of Arabidopsis thaliana accessions
Many accessions (ecotypes) of Arabidopsis have been collected. Although few differences exist among their nucleotide sequences, these subtle differences induce large genetic variation in phenotypic traits such as stress tolerance and flowering time. To understand the natural variability in salt tolerance, large-scale soil pot experiments were performed to evaluate salt tolerance among 350 Arabi...
متن کاملNatural variation of submergence tolerance among Arabidopsis thaliana accessions.
• The exploitation of natural variation in Arabidopsis thaliana (Arabidopsis) provides a huge potential for the identification of the molecular mechanisms underlying this variation as a result of the availability of a vast array of genetic and genomic resources for this species. Eighty-six Arabidopsis accessions were screened for natural variation in flooding tolerance. This forms the first ste...
متن کاملTime-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions
During low temperature exposure, Arabidopsis thaliana and many other plants from temperate climates increase in freezing tolerance in a process termed cold acclimation. However, the correct timing and rate of deacclimation, resulting in loss of freezing tolerance and initiation of growth is equally important for plant fitness and survival. While the molecular basis of cold acclimation has been ...
متن کاملNatural variation reveals relationships between pre-stress carbohydrate nutritional status and subsequent responses to xenobiotic and oxidative stress in Arabidopsis thaliana.
BACKGROUND Soluble sugars are involved in responses to stress, and act as signalling molecules that activate specific or hormone cross-talk transduction pathways. Thus, exogenous sucrose treatment efficiently induces tolerance to the herbicide atrazine in Arabidopsis thaliana plantlets, at least partially through large-scale modifications of expression of stress-related genes. METHODS Availab...
متن کاملQuantitative Methods to Assess Differential Susceptibility of Arabidopsis thaliana Natural Accessions to Dickeya dadantii
Among the most devastating bacterial diseases of plants, soft rot provoked by Dickeya spp. cause crop yield losses on a large range of species with potato being the most economically important. The use of antibiotics being prohibited in most countries in the field, identifying tolerance genes is expected to be one of the most effective alternate disease control approaches. A prerequisite for th...
متن کامل